Arquivo para fevereiro \27\UTC 2011

Python + Arduino

Não, ainda não dá para programar em Python para o ATmega, mas dá para acessar a porta serial pelo Python.

Recentemente descobri a existência do PySerial, um módulo para fazer acesso às portas seriais pelo Python, que tem me ajudado bastante a processar dados adquiridos pelo meu microcontrolador.

A melhor parte é que você pode coletar dados e, com ferramentas como Numpy e Matplotlib fazer diversas transformações e plotar gráficos bem interessantes.

Por exemplo, tenho um display de LCD cuja intensidade de luz é controlada por PWM provido pelo Arduino. A intensidade é escolhida de acordo com um valor lido num divisor resistivo com um resistor de 4.7K e um foto-resistor (LDR) que varia de 0 a 20K.

Eu escrevi um pouco sobre LDR aqui.

Para fazer o PWM, a tensão é lida numa porta analógica e passa por uma função escolhida empiricamente para a intensidade de luz ficar adequada ao ambiente. Sabe aquela coisa de que você tá querendo dormir e tem sempre um led de computador, televisão, aparelho de DVD ou outros aceso? Neste caso, o display fica com um mínimo de luminosidade quando está escuro.

Abaixo um gráfico gerado pelo sensor, usando Python.

Tensão lida(Azul), PWM (Verde) X Horário do dia:

Coloquei no pastebin um pequeno script em Python para coletar dados e salvar num arquivo.

Modo de uso:
1) Primeiro modifique a porta serial para a que você usa. No Linux é “/dev/ttyUSB“, no Windows é “COM“. Escolha também a taxa de transmissão adequada. O meu Arduino fica variando de /dev/ttyUSB0 para /dev/ttyUSB1, por isso tem uma função que busca a porta aberta.

2) Chame o script passando o número de amostras (o microcontrolador deve mandar quebras de linhas entre as amostras) e o nome do arquivo a ser gerado. Exemplo:

$ python meu_script.py 1234 nome_do_arquivo.txt

Para interromper a amostragem, aperte Ctrl+C e os dados serão salvos no arquivo antes de terminar o programa.

Para número indeterminado de amostras, coloque 0. Vai ficar pegando dados até você apertar Ctrl+C.

Programa foi escrito para Python 3, mas a única modificação necessária para Python 2 é retirar a chamada de str() na função de amostragem, pois a aquisição de dados é feito em strings de bytes e não unicode.

Os dados são salvos no arquivo assim:

['123', '546', '789', ... ]

Para obtê-los novamente no Python, faça:

>>> minha_lista = eval(open('nome_do_arquivo.txt').read())

Se estiver usando valores inteiros, converta a lista:

>>> minha_lista = [int(i) for i in minha_lista]

Caracteres personalizados

Estava vendo um post do Hack a day que mostrava um relógio num display de texto com os caracteres personalizados.

Cada letra do display de texto, ao menos esses com controlador HD44780 ou similar, é uma pequena matriz de 8 linhas por 5 colunas, sendo que você apenas escolhe o carácter e o controlador preenche a matriz.

Para estilizar os caracteres, você precisa gravar novos na memória volátil do controlador do LCD, sendo que ela tem espaço apenas para 8 (0 a 7 da tabela ASCII, não podem ser impressos). Os outros não podem ser modificados.

A ideia aqui é juntar 3 colunas para formar um número grande. Para isso, é preciso criar os caracteres que vão ser usados para desenhar as partes do número, sendo que precisam ser bem genéricos para que caibam nos 8 espaços da memória.

No caso eu usei 5 caracteres. Os três acima e as versões invertidas dos dois últimos. E criei os números como abaixo:

Para criar cada um dos 5 caracteres estilizados, é preciso enviar ao LCD o formato de cada uma das 8 linhas com números de 0 a 31, onde cada bit acende um ponto da linha. Você pode usar notação binária (por exemplo 0b10101) ou colocar o número decimal correspondente, se achar mais fácil.

Com as bibliotecas do Arduino, pode ser feito algo como:

LiquidCrystal lcd(2, 3, 4, 8, 9, 10, 11);
byte meus_chars[][8] = {{31,31,31,31,31,31,31,31}, 
                        {31,31,0,0,0,0,0,0},   
                        {0,0,0,0,0,0,31,31},
                        {31,31,0,0,0,0,0,31},
                        {31,0,0,0,0,0,31,31}};

for (byte i=0; i<5; i++){
    lcd.createChar(i, meus_chars[i]);
}

//Exemplo de exibição do número 0
lcd.clear();
lcd << '\0' << '\1' << '\0';
lcd.setCursor(0,1);
lcd << '\0' << '\2' << '\0';

Falando nisso, baixe a biblioteca Streaming que faz overload do << para imprimir coisas no LCD ou na Serial.

Abaixo um vídeo dos números no display:
Meu display 16×2 ainda não chegou. Enquanto isso, continuo com esse 8×2.

Projeto com display LCD

Com o advento do Arduino, fazer sistemas caseiros de controle ficou bem mais fácil, pois a IDE desse microcontrolador traz diversas bibliotecas que precisam de pouca configuração para acessar outros hardwares.

No final de semana eu fiz um pequeno projeto onde a hora e temperatura eram apresentadas num display LCD de texto com espaço para 8 caracteres em cada uma das suas duas linhas.

Para medir a temperatura eu usei um termômetro digital da Dallas Semiconductor, o DS18B20, que tem precisão de 0.0625 grau e já vem calibrado de fábrica.

Esse termômetro é um hardware bastante interessante, pois usa um protocolo chamado 1-Wire que permite diversos aparelhos conectados num fio e pode ser alimentado de forma parasita (pelo próprio fio de comunicação). Inclusive eu testei com dois termômetros conectados no mesmo fio e ambos apresentavam sempre a mesma temperatura (com uma diferença de no máximo 0.1 grau).

Basicamente, eles funcionam com um endereçamento de 64 bits, fazendo com que não exista confusão na comunicação. Essa forma de utilização é conhecida como microlan.

Para ajustar o horário, a solução mais simples foi mandar um comando serial para o microcontrolador, já que ele está conectado à USB e não tinha botões para colocar.

Abaixo deixo um vídeo onde eu seguro o termômetro e a temperatura (que já estava alta pelo calor do verão) aumenta um pouco mais.

Esse relógio-termômetro é parte de um projeto bem maior que estou fazendo para uma matéria da faculdade. Em breve mais coisas vão aparecer aqui.